home *** CD-ROM | disk | FTP | other *** search
- à 5.2èComlpex å One Real Roots-Third Order, Lïear, Constant
- èè Coefficient Differential Equation
- äèFïd ê general solution
-
- â y»»» + 16y» = 0
- The characteristic equation
- mÄ + 16m = 0
- Facërs ïëè m(mì + 16) = 0
- The solutions areèm = 0, -4i, 4i
- Usïg EULER'S FORMULA ë convert ë ê TRIGONOMETRIC FORM,
- ê general solution isèèC¬ + C½cos[4x]+ C¼sï[4x]
-
- éS è The LINEAR, HOMOGENEOUS, CONSTANT COEFFICIENT, THIRD ORDER
- DIFFERENTIAL EQUATION can be written ï ê form
- Ay»»» + By»» + Cy» + D = 0
- where A, B, C å D are constants.
- è As with ê correspondïg SECOND ORDER differential
- equation, an assumption is made that ê form ç ê solutions
- is
- y = e¡╣
- Differentiatïg å substitutïg yields
- (AmÄ + Bmì + Cm + D)e¡╣ = 0
- As e¡╣ is never zero, it can be cancelled yieldïg ê
- CHARACTERISTIC EQUATION
- AmÄ + Bmì + Cm + D = 0
-
- èèEvery CUBIC EQUATION with real coefficients has at least
- ONE REAL ROOT.èThe oêr two roots are eiêr
- a) BOTH REAL or
- b) a COMPLEX CONJUGATE PAIR
-
- In ê case where êre is only ONE real root n, it can be
- facëred out ë leaveè
- èè (m - n)(amì + bm + c) = 0
-
- For ê quadtratic term, if ê DISCRIMINANT bì - 4ac is
- negative, ê roots are a pair ç COMPLEX CONJUGATES
-
- m = l ± giè where l å g are real constants
-
- This makes ê GENERAL SOLUTION have ê form
-
- y = C¬eⁿ╣ + C½eÑ╚ó╩ûª╣ + C¼eÑ╚ú╩ûª╣
-
- The last two solutions, unfortunately, are not ï ê form ç
- elementary functions from calculus.èHowever, êy can be
- converted ë familiar functions by usïg EULER'S FORMUALA
- ï two ç its forms
-
- eû╣è= cos[x] + i sï[x]
-
- eúû╣ = cos[x] - i sï[x]
-
- Substitutïg êse formulas ïë ê general solution, re-
- arrangïg å renamïg ê arbitrary constants produces ê
- general solution
-
- y = C¬ eⁿ╣ + C½ e╚╣ cos[gx]è+èC¼ e╚╣ sï[gx]
-
-
- As with ê second order, non-homogeneous differential
- equations, solvïg a third order, NON-HOMOGENEOUS differential
- equation is done ï two parts.
-
- 1) Solve ê HOMOGENEOUS differential equation for a
- GENERAL SOLUTION with THREE ARBITRARY CONSTANTS
-
- 2) Fïd ANY PARTICULAR SOLUTION ç ê NON-HOMOGENEOUS
- differential equation.èAs disucssed ï CHAPTER 5, êre are
- two maï techniques for fïdïg a particular solution.
-
- A) METHOD OF UNDETERMINED COEFFICIENTS
- This technique is used when ê non-homogeneous
- term is
- 1)è A polynomial
- 2)è A real exponential
- 3)è A sïe or cosïe times a real exponential
- 4)è A lïear combïation ç ê above.
- This technique is explaïed ï à 4.3 å can be
- for ANY ORDER differential equation.
-
- B) METHOD OF VARIATION OF PARAMETERS
- This technique is valid for an ARBITRARY NON-HOMOGEN-
- EOUS TERM.èIt does require ê ability ë evaluate
- N ïtegrals for an Nth order differential equaën.
- As ê order ç ê differential equation ïcreses,
- ê ïtegrals become messier ï general.èThe second
- order version is discussed ï à 4.4.
-
- 1èè y»»» + 4y» = 0
-
- A)è C¬eú╣ + C½xeú╣ + C¼eÅ╣
- B)è C¬e╣ + C½xe╣ + C¼eúÅ╣
- C)è C¬ + C½cos[x] + C¼sï[s]
- D)è C¬ + C½cos[2x] + C¼sï[2x]
- ü For ê differential equation
- y»»» + 4y» = 0
- ê CHARACTERISTIC EQUATION is
- mÄ + 4m = 0
- This facërs ïë
- m(mì + 4) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m = -2i, 2i.èThe real solution is 0.
- Usïg EULER'S FORMULA ê general solution is
- C¬ + C½cos[2x] + C¼sï[2x]
-
- ÇèD
-
- 2 y»»» - 3y»» + y» - 3y = 0
-
- A)è C¬e╣ + C½eú╣ + C¼eÄ╣
- B)è C¬eú╣ + C½e╣ + C¼eúÄ
- C)è C¬cos[x] + C½sï[x] + C¼eÄ╣
- D)è C¬cos[x] + C½sï[x] + C¼eúÄ╣
- ü For ê differential equation
- y»»» - 3y»» + y» - 3y = 0
- ê CHARACTERISTIC EQUATION is
- mÄ - 3mì + m - 3 = 0
- This facërs ïë
- (m - 1)(mì + 1) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m = -i, i.èThe real solution is 3.
- Usïg EULER'S FORMULA ê general solution is
- C¬cos[x] + C½sï[x] + C¼eÄ╣
-
- ÇèC
-
- è3 y»»» - 2y» - 4y = 0
-
- A)è C¬eì╣ + C½e╣cos[x] + C¼e╣sï[x]
- B) C¬eì╣ + C½eú╣cos[x] + C¼eú╣sï[x]
- C)è C¬eúì╣ + C½e╣cos[x] + C¼e╣sï[x]
- D)è C¬eúì╣ + C½eú╣cos[x] + C¼eú╣sï[x]
-
- ü For ê differential equation
- y»»» - 2y» - 4y = 0
- ê CHARACTERISTIC EQUATION is
- mÄ - 2m - 4 = 0
- This facërs ïë
- (m - 2)(mì + 2m + 2) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m = -1 - i, -1 + i.èThe real solution is 2.
- Usïg EULER'S FORMULA ê general solution is
- C¬eì╣ + C½eú╣cos[x] + C¼eú╣sï[x]
-
- ÇèB
-
- 4 y»»» + 8y = 0
-
- A)è C¬eì╣ + C½e╣cos[√3 x] + C¼e╣sï[√3 x]
- è B)è C¬eúì╣ + C½e╣cos[√3 x] + C¼e╣sï[√3 x]
- C)è C¬eì╣ + C½eú╣cos[√3 x] + C¼eú╣sï[√3 x]
- D)è C¬eúì╣ + C½eú╣cos[√3 x] + C¼eú╣sï[√3 x]
- ü èèFor ê differential equation
- y»»» + 8y = 0
- ê CHARACTERISTIC EQUATION is
- mÄ + 8è= 0
- This facërs (by SUM OF CUBES) ïë
- (m + 2)(mì - 2m + 4) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m = 1 - √3i, 1 + i√3.èThe real solution is -2.
- Usïg EULER'S FORMULA ê general solution is
- C¬eúì╣ + C½e╣cos[√3 x] + C¼e╣sï[√3 x]
-
- ÇèB
-
- S 5 8y»»» - 12y»» + 2y» - 3 = 0
-
- A)è C¬eÄ╣»ì + C½cos[2x] + C¼sï[2x]
- B)è C¬eì╣»Ä + C½cos[2x] + C¼sï[2x]
- C)è C¬eÄ╣»ì + C½cos[x/2] + C¼sï[x/2]
- D)è C¬eì╣»Ä + C½cos[x/2] + C¼sï[x/2]
- ü For ê differential equation
- 8y»»» - 12y»» + 2y» - 3y = 0
- ê CHARACTERISTIC EQUATION is
- 8mÄ - 12mì + 2m - 3 = 0
- This facërs ïë
- (2m - 3)(4mì + 1) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m =è-1/2 i, +1/2 i.èThe real solution is 3/2.
- Usïg EULER'S FORMULA ê general solution is
- C¬eÄ╣»ì + C½cos[x/2] + C¼sï[x/2]
-
- ÇèC
-
- 6 y»»» - 10y»» + 37y» - 52y = 0
-
- A) C¬eÅ╣ + C½eÄ╣cos[2x] + C¼eÄ╣sï[2x]
- B) C¬eì╣ + C½eÅ╣cos[3x] + C¼eÅ╣sï[3x]
- C) C¬eÄ╣ + C½eì╣cos[4x] + C¼eì╣sï[4x]
- D) C¬eúÄ╣ + C½eúì╣cos[4x] + C¼eúì╣sï[4x]
- ü èèFor ê differential equation
- y»»» - 10y»» + 37y» - 52y = 0
- ê CHARACTERISTIC EQUATION is
- mÄ - 10mì + 37m - 52è= 0
- This facërs ïë
- (m - 4)(mì - 6m + 13) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m = 3 - 2i, 3 + 2i.èThe real solution is 4.
- Usïg EULER'S FORMULA ê general solution is
- C¬eÅ╣ + C½eÄ╣cos[2x] + C¼eÄ╣sï[2x]
-
- ÇèA
-
- äèSolve ê ïitial value problem
-
- â è For ê Initial Value Problem,
- y»»» + y» = 0
- y(0) = 3, y»(0) = 3, y»»(0) = 3
- The general solution isè C¬ + C½cos[x] + C¼sï[x]
- Differentiatïg å substitutïg 0 for x produces a system ç
- three equations ï ê three constants.èSolvïg this system
- gives ê solutionèè y = 3 + 3cos[s] + 4sï[x]
-
- éSèèAs ê GENERAL SOLUTON ç a THIRD ORDER differential
- equation has THREE ARBITRARY CONSTANTS, for an Initial Value
- Problem ë completely specify which member ç this three
- parameter family ç curves requires INITAL VALUES.
- è The ståard ïitial values problem for a third order,
- lïear, constant coefficient differential equation is
- Ay»»» + By»» + Cy» + Dy = g(x)
- èèèy(x╠) =è y╠
- èè y»(x╠) =èy»╠
- èèy»»(x╠) = y»»╠
- èèAs with ê second order, ïital value problem, solvïg
- this problem is a 2 step process
-
- 1)èèSolve ê differential equation ë produce a general
- solution with three arbitrary constants.
-
- 2)èèCalculate ê first å second derivatives ç ê general
- solution.èThen substitue ê ïitial value ç ïdependent
- variable, x╠ , ïë ê general solution å its first two
- derivatives.èThis will produce a system ç 3 equations ï
- ê three arbitrary constants.èSolvïg this system gives ê
- values ç ê three constants which gives ê specific
- solution ç ê ïitial value problem.
-
- 7è y»»» + 9y» = 0
- y(0) = -5èy»(0) = 12èy»»(0) = -18
-
- A) 3 + 2cos[3x] + 4sï[3x]
- B) 3 + 2cos[3x] - 4sï[3x]
- C) 3 - 2cos[3x] + 4sï[3x]
- D) -3 - 2cos[3x] + 4sï[3x]
- ü èèFor ê differential equation
- y»»» + 9y» = 0
- ê CHARACTERISTIC EQUATION is
- mÄ + 9m = 0
- This facërs ïë
- m(mì + 9) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m =è-3i, 3i.èThe real solution is 0.
- Usïg EULER'S FORMULA ê general solution is
- èy = C¬ + C½cos[3x] + C¼sï[3x]
- Differentiatïg
- y» = -3C½sï[3x] + 3C¼cos[3x]
- y»» =è9C½cos[3x] - 9C¼cos[3x]
- Substitutïg ê ïital value ç ê dependent variable 0
- èy(0) =è-5 = C¬ +èC½
- y»(0) =è12 =èèèèè 3C¼
- y»»(0) = -18 =èèè9C½
- Sovlïg this system ç equations yields
- C¬ = -3è C½ = -2èC¼ = 4
- Thus ê solution ç ê ïitial value problem is
- y = -3 - 2cos[3x] + 4sï[3x]
-
- ÇèD
-
- 8 y»»» - 3y»» + 4y» - 2y = 0
- y(0) = -3èy»(0) = 0èy»»(0) = 5
-
- A) e╣ + 2e╣cos[x] + 3e╣sï[x]
- B) e╣ + 2e╣cos[x] - 3e╣sï[x]
- C) -e╣ + 2e╣cos[x] - 3e╣sï[x]
- D) -e╣ - 2e╣cos[x] + 3e╣sï[x]
- ü èèFor ê differential equation
- y»»» - 3y»» + 4y» - 2y = 0
- ê CHARACTERISTIC EQUATION is
- mÄ - 3mì + 4mè- 2 = 0
- This facërs ïë
- (m - 1)(mì -2m + 2) = 0
- The quadratic equation is IRREDUCIBLE OVER THE REALS so it has
- a pair ç complex conjugates as its solutions which are
- m =è1 - i, 1 + i.èThe real solution is 1.
- Usïg EULER'S FORMULA ê general solution is
- èy = C¬e╣ + C½e╣cos[x] + C¼e╣sï[x]
- Differentiatïg
- y» = C¬e╣ + C½{-e╣sï[x] + e╣cos[x]}
- + C¼{e╣cos[x] + e╣sï[x]}
- y»» = C¬e╣ + C½{-2e╣sï[x]} + C¼{2e╣cos[x]}
- Substitutïg ê ïital value ç ê dependent variable 0
- èy(0) =è-3 = C¬ + C½
- y»(0) =è 0 = C¬ + C½ +èC¼
- y»»(0) =è 5 = C¬èèè+ 2C¼
- Sovlïg this system ç equations yields
- C¬ = -1è C½ = -2èC¼ = 3
- Thus ê solution ç ê ïitial value problem is
- y = -e╣ - 2e╣cos[x] + 3e╣sï[x]
-
- ÇèD
-
-
-
-
-
-